| Year & # | 2017 | 2016 | 2014 | 2010 | 2010 | | |---------------------|-------------|-------------------|-----------------------------|--------|-----------|---------------------| | | 4 | 6 | 3 | 1 | 2 | | | National
Average | 3.13 | 3.82 | 5.24 | 5.39 | 3.92 | | | Type of
Problem | Implicit WP | Taylor &
Error | Geometric
Integral Graph | FTC WP | Trapezoid | Maclaurin
Taylor | At time t = 0, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than 27°C for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{dH}{dt} = -\frac{1}{4}(H - 27)$, where H(t) is measured in degrees Celsius and H(0) = 91. - (a) Write an equation for the line tangent to the graph of H at t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3. - (b) Use $\frac{d^2H}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3. - (c) For t < 10, an alternate model for the internal temperature of the potato at time t minutes is the function G that satisfies the differential equation $\frac{dG}{dt} = -(G 27)^2/3$, where G(t) is measured in degrees Celsius and G(0) = 91. Find an expression for G(t). Based on this model, what is the internal temperature of the potato at time t = 3? The function f has a Taylor series about x = 1 that converges to f(x) for all x in the interval of convergence. It is known that f(1) = 1, $f'(1) = -\frac{1}{2}$, and the nth derivative of f at x = 1 is given by $f^{(n)}(1) = (-1)^n \frac{(n-1)!}{2^n}$ for $n \ge 2$. - (a) Write the first four nonzero terms and the general term of the Taylor series for f about x = 1. - (b) The Taylor series for f about x = 1 has a radius of convergence of 2. Find the interval of convergence. Show the work that leads to your answer. - (c) The Taylor series for f about x = 1 can be used to represent f(1.2) as an alternating series. Use the first three nonzero terms of the alternating series to approximate f(1.2). - (d) Show that the approximation found in part (c) is within 0.001 of the exact value of f(1.2). The function f is defined on the closed interval [-5, 4]. The graph of f consists of three line segments and is shown in the figure above. Let g be the function defined by $g(x) = \int_{-3}^{x} f(t) dt$. (b) On what open intervals contained in -5 < x < 4 is the graph of g both increasing and concave down? Give a reason for your answer. (d) The function p is defined by $p(x) = f(x^2 - x)$. Find the slope of the line tangent to the graph of p at the point where x = -1. Graph of f There is no snow on Janet's driveway when snow begins to fall at midnight. From midnight to 9 A.M., snow accumulates on the driveway at a rate modeled by $f(t) = 7te^{\cos t}$ cubic feet per hour, where t is measured in hours since midnight. Janet starts removing snow at 6 A.M. (t = 6). The rate g(t), in cubic feet per hour, at which Janet removes snow from the driveway at time t hours after midnight is modeled by $$g(t) = \begin{cases} 0 & \text{for } 0 \le t < 6 \\ 125 & \text{for } 6 \le t < 7 \\ 108 & \text{for } 7 \le t \le 9 \end{cases}$$ - (a) How many cubic feet of snow have accumulated on the driveway by 6 A.M.? - (b) Find the rate of change of the volume of snow on the driveway at 8 A.M. - (c) Let h(t) represent the total amount of snow, in cubic feet, that Janet has removed from the driveway at time t hours after midnight. Express h as a piecewise-defined function with domain 0 ≤ t ≤ 9. - (d) How many cubic feet of snow are on the driveway at 9 A.M.? | t (hours) | 0 | 2 | 5 | 7 | 8 | |----------------------------|---|---|----|----|----| | E(t) (hundreds of entries) | 0 | 4 | 13 | 21 | 23 | A zoo sponsored a one-day contest to name a new baby elephant. Zoo visitors deposited entries in a special box between noon (t = 0) and 8 P.M. (t = 8). The number of entries in the box t hours after noon is modeled by a differentiable function E for $0 \le t \le 8$. Values of E(t), in hundreds of entries, at various times t are shown in the table above. - (a) Use the data in the table to approximate the rate, in hundreds of entries per hour, at which entries were being deposited at time t = 6. Show the computations that lead to your answer. - (b) Use a trapezoidal sum with the four subintervals given by the table to approximate the value of $\frac{1}{8} \int_0^8 E(t) dt$. Using correct units, explain the meaning of $\frac{1}{8} \int_0^8 E(t) dt$ in terms of the number of entries. - (c) At 8 P.M., volunteers began to process the entries. They processed the entries at a rate modeled by the function P, where $P(t) = t^3 30t^2 + 298t 976$ hundreds of entries per hour for $8 \le t \le 12$. According to the model, how many entries had not yet been processed by midnight (t = 12)? - (d) According to the model from part (c), at what time were the entries being processed most quickly? Justify your answer.