AP Calculus BC – AP Exam Review Project –Free Response Problems -> Group 7 | Year & # | 2017 | 2015 | 2014 | 2011 | 2008 | | |---------------------|----------------------|-------------------|---------|-----------------------|------------------|----------------------------------| | | 6 | 2 | 4 | 4 | 1 | | | National
Average | 3.23 | 4.87 | 3.97 | 3.84 | 6.38 | | | Type of
Problem | Maclaurin &
Error | Vector &
Speed | WP Flow | Max,
Min, &
Poi | Area &
Volume | Geometric
Integral
Tangent | $$f(0) = 0$$ $$f'(0) = 1$$ $$f^{(n+1)}(0) = -n \cdot f^{(n)}(0) \text{ for all } n \ge 1$$ A function f has derivatives of all orders for -1 < x < 1. The derivatives of f satisfy the conditions above. The Maclaurin series for f converges to f(x) for |x| < 1. - (a) Show that the first four nonzero terms of the Maclaurin series for f are $x \frac{x^2}{2} + \frac{x^3}{3} \frac{x^4}{4}$, and write the general term of the Maclaurin series for f. - (b) Determine whether the Maclaurin series described in part (a) converges absolutely, converges conditionally, or diverges at x = 1. Explain your reasoning. - (c) Write the first four nonzero terms and the general term of the Maclaurin series for $g(x) = \int_0^x f(t) dt$. - (d) Let $P_n\left(\frac{1}{2}\right)$ represent the *n*th-degree Taylor polynomial for g about x=0 evaluated at $x=\frac{1}{2}$, where g is the function defined in part (c). Use the alternating series error bound to show that $$\left|P_4\left(\frac{1}{2}\right) - g\left(\frac{1}{2}\right)\right| < \frac{1}{500}.$$ At time $t \ge 0$, a particle moving along a curve in the xy-plane has position (x(t), y(t)) with velocity vector $v(t) = (\cos(t^2), e^{0.5t})$. At t = 1, the particle is at the point (3, 5). - (a) Find the x-coordinate of the position of the particle at time t=2. - (b) For 0 < t < 1, there is a point on the curve at which the line tangent to the curve has a slope of 2. At what time is the object at that point? - (c) Find the time at which the speed of the particle is 3. - (d) Find the total distance traveled by the particle from time t = 0 to time t = 1. Train A runs back and forth on an east-west section of railroad track. Train A's velocity, measured in meters per minute, is given by a differentiable function $v_A(t)$, where time t is measured in minutes. Selected values for $v_A(t)$ are given in the table above. | t (minutes) | 0 | 2 | 5 | 8 | 12 | |--------------------------|---|-----|----|------|------| | $v_A(t)$ (meters/minute) | 0 | 100 | 40 | -120 | -150 | - (a) Find the average acceleration of train A over the interval $2 \le t \le 8$. - (b) Do the data in the table support the conclusion that train A's velocity is -100 meters per minute at some time t with 5 < t < 8? Give a reason for your answer. - (c) At time t = 2, train A's position is 300 meters east of the Origin Station, and the train is moving to the east. Write an expression involving an integral that gives the position of train A, in meters from the Origin Station, at time t = 12. Use a trapezoidal sum with three subintervals indicated by the table to approximate the position of the train at time t = 12. - (d) A second train, train B, travels north from the Origin Station. At time t the velocity of train B is given by $v_B(t) = -5t^2 + 60t + 25$, and at time t = 2 the train is 400 meters north of the station. Find the rate, in meters per minute, at which the distance between train A and train B is changing at time t = 2. The continuous function f is defined on the interval $-4 \le x \le 3$. The graph of f consists of two quarter circles and one line segment, as shown in the figure above. Let $$g(x) = 2x + \int_0^x f(t) dt$$. - (a) Find g(-3). Find g'(x) and evaluate g'(-3). - (b) Determine the x-coordinate of the point at which g has an absolute maximum on the interval $-4 \le x \le 3$. Justify your answer. - (c) Find all values of x on the interval -4 < x < 3 for which the graph of g has a point of inflection. Give a reason for your answer. - Graph of f - (d) Find the average rate of change of f on the interval $-4 \le x \le 3$. There is no point c, -4 < c < 3, for which f'(c) is equal to that average rate of change. Explain why this statement does not contradict the Mean Value Theorem. Let R be the region bounded by the graphs of $y = \sin(\pi x)$ and $y = x^3 - 4x$, as shown in the figure above. - (a) Find the area of R. - (b) The horizontal line y = -2 splits the region R into two parts. Write, but do not evaluate, an integral expression for the area of the part of R that is below this horizontal line. - (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a square. Find the volume of this solid. - (d) The region R models the surface of a small pond. At all points in R at a distance x from the y-axis, the depth of the water is given by h(x) = 3 - x. Find the volume of water in the pond.