
INTEGRALS AND SERIES 
 

[7.7] Definition of convergence of improper integrals: 
 Suppose  f(x)  is positive for x a . 
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 Otherwise, we say that the integral diverges. 

 

 

[7.8] Comparison Test for 
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a
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 Assume ( )f x is positive.  Proving convergence or divergence involves two stages: 

 (1) By looking at the behavior of the integrand for large x, guess whether the integral 

converges or not.  

 (2) Confirm the guess by finding an appropriate function and inequality so that: 
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[7.8] Useful Integrals for Comparison 
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  converges to  1/(p – 1)  for  p > 1  and diverges for  p < 1. 
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  converges for  p < 1  and diverges for  p > 1. 
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  converges for  a > 0. 

 

 

[9.2] Infinite Geometric Series 
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[9.3] Connection between Series and Integrals – The Integral Test 
 Suppose  )(nfa

n
 ,  where  f(x)  is decreasing and positive for  x c . 
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[9.3] A Useful Series for Comparison 
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  converges if  p > 1  and  diverges if  p < 1. 

 



 

[9.4] Comparison Test 
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[9.4] Limit Comparison Test 
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[9.4] Convergence of Absolute Value 
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[9.4] The Ratio Test 

 For a series   n
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 If  L < 1,  then   n
a   converges. 

 If  L > 1  or if  L  is infinite,  then   n
a   diverges. 

 If  L = 1,  the test does not tell us anything about the convergence of   n
a . 

 

 

[9.4] Alternating Series Test 
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[9.5] Power Series – Radius of Convergence (ROC or R) and Interval of Convergence (IOC) 
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