INTEGRALS AND SERIES

[7.7] Definition of convergence of improper integrals:

Suppose $f(x)$ is positive for $x \geq a$.
If $\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x$ is a finite number, we say that $\int_{a}^{\infty} f(x) d x$ converges and define

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

Otherwise, we say that the integral diverges.
[7.8] Comparison Test for $\int_{a}^{\infty} f(x) d x$
Assume $f(x)$ is positive. Proving convergence or divergence involves two stages:
(1) By looking at the behavior of the integrand for large x, guess whether the integral converges or not.
(2) Confirm the guess by finding an appropriate function and inequality so that:

If $0 \leq f(x) \leq g(x)$ and $\int_{a}^{\infty} g(x) d x$ converges, then $\int_{a}^{\infty} f(x) d x$ converges.
If $0 \leq g(x) \leq f(x)$ and $\int_{a}^{\infty} g(x) d x$ diverges, then $\int_{a}^{\infty} f(x) d x$ diverges.

[7.8] Useful Integrals for Comparison

(1) $\quad \int_{1}^{\infty} \frac{1}{x^{p}} d x$ converges to $1 /(p-1)$ for $p>1$ and diverges for $p \leq 1$.
(2) $\int_{0}^{1} \frac{1}{x^{p}} d x$ converges for $p<1$ and diverges for $p \geq 1$.
(3) $\quad \int_{0}^{\infty} e^{-a x} d x$ converges for $a>0$.

[9.2] Infinite Geometric Series

If $|x|<1, \quad \sum_{n=0}^{\infty} a x^{n}=\frac{a}{1-x}$

[9.3] Connection between Series and Integrals - The Integral Test

Suppose $a_{n}=f(n)$, where $f(x)$ is decreasing and positive for $x \geq c$.
If $\int_{c}^{\infty} f(x) d x$ converges, then $\sum a_{n}$ converges.
If $\int_{c}^{\infty} f(x) d x$ diverges, then $\sum a_{n}$ diverges.

[9.3] A Useful Series for Comparison

The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leq 1$.

[9.4] Comparison Test

Suppose $0 \leq a_{n} \leq b_{n}$ for all n.
If $\sum b_{n}$ converges, then $\sum a_{n}$ converges.
If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.

[9.4] Limit Comparison Test

Suppose $a_{n}>0$ and $b_{n}>0$ for all n.
If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c$, where $c>0$, then the two series $\sum a_{n}$ and $\sum b_{n}$ either both converge or both diverge.

[9.4] Convergence of Absolute Value

If $\sum\left|a_{n}\right|$ converges, then so does $\sum a_{n}$.

[9.4] The Ratio Test

For a series $\sum a_{n}$, suppose the sequence of ratios $\left|\frac{a_{n+1}}{a_{n}}\right|$ has a limit: $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$,
If $L<1$, then $\sum a_{n}$ converges.
If $L>1$ or if L is infinite, then $\sum a_{n}$ diverges.
If $L=1$, the test does not tell us anything about the convergence of $\sum a_{n}$.

[9.4] Alternating Series Test

The alternating series $\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$ converges if $0<a_{n+1}<a_{n}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=0$.
[9.5] Power Series - Radius of Convergence (ROC or R) and Interval of Convergence (IOC) For the power series $\sum_{n=0}^{\infty} C_{n}(x-a)^{n}$:

- If $\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|$ is infinite, then $R=0$ and the series converges only for $x=a$.
- If $\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|=0$, then $R=\infty$ and the series converges for all values of x.
- If $\lim _{n \rightarrow \infty}\left|\frac{C_{n+1}}{C_{n}}\right|=K$, where K is finite and nonzero, then $R=1 / K$ and the series converges for $|x-a|<R$ and diverges for $|x-a|>R$.

